AUTOMATIC EEG CLASSIFICATION USING DENSITY BASED ALGORITHMS DBSCAN AND DENCLUE
نویسندگان
چکیده
منابع مشابه
Density - based clustering algorithms – DBSCAN and SNN
This document describes the implementation of two density-based clustering algorithms: DBSCAN [Ester1996] and SNN [Ertoz2003]. These algorithms were implemented within the context of the LOCAL project [Local2005] as part of a task that aims to create models of the geographic space (Space Models) to be used in context-aware mobile systems. Here, the role of the clustering algorithms is to identi...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملdbscan: Fast Density-based Clustering with R
This article describes the implementation and use of the R package dbscan, which provides complete and fast implementations of the popular density-based clustering algorithm DBSCAN and the augmented ordering algorithm OPTICS. Compared to other implementations, dbscan offers open-source implementations using C++ and advanced data structures like k-d trees to speed up computation. An important ad...
متن کاملAn Automatic Classification of Lung Tissue Using Density Based Approach
The main objective is to develop a technique for classifying the lung tissue as well as finding lung cancer and ranking its severity. To classify the lung tissue the existing system is used. In the existing system Sparse based features are used for classification. In proposed system the lung cancer is detected and segmented. To do this the bee colony technique is used. Before applying the bee c...
متن کاملDENCLUE 2.0: Fast Clustering Based on Kernel Density Estimation
The Denclue algorithm employs a cluster model based on kernel density estimation. A cluster is defined by a local maximum of the estimated density function. Data points are assigned to clusters by hill climbing, i.e. points going to the same local maximum are put into the same cluster. A disadvantage of Denclue 1.0 is, that the used hill climbing may make unnecessary small steps in the beginnin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Polytechnica
سال: 2019
ISSN: 1805-2363,1210-2709
DOI: 10.14311/ap.2019.59.0498